Approximation Schemes for Planar Graph Problems

نویسندگان

  • Mohammad Taghi Hajiaghayi
  • Erik D. Demaine
چکیده

Many NP-hard graph problems become easier to approximate on planar graphs and their generalizations. (A graph is planar if it can be drawn in the plane (or the sphere) without crossings. For definitions of other related graph classes, see the entry on Bidimensionality (2004; Demaine, Fomin, Hajiaghayi, Thilikos).) For example, maximum independent set asks to find a maximum subset of vertices in a graph that induce no edges. This problem is inapproximable in general graphs within a factor of n1− for any > 0 unless NP = ZPP (and inapproximable within n1/2− unless P = NP), while for planar graphs there is a 4-approximation (or simple 5-approximation) by taking the largest color class in a vertex 4-coloring (or 5-coloring). Another is minimum dominating set, where the goal is to find a minimum subset of vertices such that every vertex is either in or adjacent to the subset. This problem is inapproximable in general graphs within log n for some > 0 unless P = NP, but as we will see, for planar graphs the problem admits a polynomial-time approximation scheme (PTAS): a collection of (1 + )-approximation algorithms for all > 0. There are two main general approaches for designing PTASs for problems on planar graphs and their generalizations: the separator approach and the Baker approach. Lipton and Tarjan [15, 16] introduced the first approach, which is based on planar separators. The first step in this approach is to find a separator of O( √ n) vertices or edges, where n is the size of the graph, whose removal splits the graph into two or more pieces each of which is a constant fraction smaller than the original graph. Then recurse in each piece, building a recursion tree of separators, and stop when the pieces have some constant size such as 1/ . The problem can be solved on these pieces by brute force, and then it remains to combine the solutions up the recursion tree. The induced error can often be bounded in terms of the total size of all separators, which in turn can be bounded by n. If the optimal solution is at least some constant factor times n, this approach often leads to a PTAS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Schemes for Minimum 2-Connected Spanning Subgraphs in Weighted Planar Graphs

We present new approximation schemes for various classical problems of finding the minimum-weight spanning subgraph in edgeweighted undirected planar graphs that are resistant to edge or vertex removal. We first give a PTAS for the problem of finding minimum-weight 2-edge-connected spanning subgraphs where duplicate edges are allowed. Then we present a new greedy spanner construction for edge-w...

متن کامل

A Well-Connected Separator for Planar Graphs

We prove a separator theorem for planar graphs, which has been used to obtain polynomial time approximation schemes for the metric TSP [8] and the 2edge-connected and biconnected spanning subgraph problems [6] in unweighted planar graphs. We also prove an extension of the theorem which was used in [3] to find quasi-polynomial time approximation schemes for the weighted cases of the latter two p...

متن کامل

On efficient polynomial-time approximation schemes for problems on planar structures

This work examines the existence of efficient polynomial-time approximation schemes (EPTAS) for a variety of problems contained in the syntactic classes Planar TMIN, Planar TMAX, and Planar MPSAT as defined by Khanna and Motwani. Based on the recent work of Alber, Bodlaender, Fernau and Niedermeier and others, we describe subclasses of problems from Planar TMIN, Planar TMAX, and Planar MPSAT th...

متن کامل

Thin graph classes and polynomial-time approximation schemes

Baker [1] devised a powerful technique to obtain approximation schemes for various problems restricted to planar graphs. Her technique can be directly extended to various other graph classes, among the most general ones the graphs avoiding a fixed apex graph as a minor. Further generalizations (e.g., to all proper minor closed graph classes) are known, but they use a combination of techniques a...

متن کامل

General approximation schemes for min-max (regret) versions of some (pseudo-)polynomial problems

While the complexity of min-max and min-max regret versions of most classical combinatorial optimization problems has been thoroughly investigated, there are very few studies about their approximation. For a bounded number of scenarios, we establish general approximation schemes which can be used for min-max and min-max regret versions of some polynomial or pseudo-polynomial problems. Applying ...

متن کامل

Approximate Minimum 2-Connected Subgraphs in Weighted Planar Graphs

We consider the problems of finding the minimum-weight 2-connected spanning subgraph in edge-weighted planar graphs and its variations. We first give a PTAS for the problem of finding minimum-weight 2-edge-connected spanning subgraphs where duplicate edges are allowed. Then we present a new greedy spanner construction for edge-weighted planar graphs. From this we derive quasi-polynomial time ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008